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Abstract. Detailed mean-field and Monte Carlo studies of the dynamic magnetization-reversal
transition in the Ising model in its ordered phase under a competing external magnetic field of
finite duration have been presented here. An approximate analytical treatment of the mean-field
equations of motion shows the existence of diverging length and time scales across this dynamic
transition phase boundary. These are also supported by numerical solutions of the complete mean-
field equations of motion and the Monte Carlo study of the system evolving under Glauber dynamics
in both two and three dimensions. Classical nucleation theory predicts different mechanisms of
domain growth in two regimes marked by the strength of the external field, and the nature of the
Monte Carlo phase boundary can be comprehended satisfactorily using the theory. The order of the
transition changes from a continuous to a discontinuous one as one crosses over from coalescence
regime (stronger field) to a nucleation regime (weaker field). Finite-size scaling theory can be
applied in the coalescence regime, where the best-fit estimates of the critical exponents are obtained
for two and three dimensions.

1. Introduction

The study of the response of pure Ising systems under the action of a time-dependent
external magnetic field has been of recent interest in statistical physics [1–3]. A whole
class of dynamic phase transitions emerged from the study of such driven spin systems under
different time dependences of the driving field. A mean-field study was initially proposed by
Tome and Oliveira [4] where the time dependence of the external perturbation was periodic.
Subsequently, through extensive Monte Carlo studies, the existence of a dynamic phase
transition under a periodic magnetic field was established and properly characterized [5–7].
Later, efforts were made to investigate the response of such systems under magnetic fields
which are of the form of a ‘pulse’ or, in other words, applied for a finite duration of time. All
the studies with pulsed fields were made on a system below its static critical temperature T 0

c ,
where the equilibrium state has a prevalent order along a particular direction. The pulse is
called ‘positive’ when it is applied along the direction of the prevalent order and ‘negative’
when applied in opposition. The results for the positive pulse case was analysed by extending
appropriately the finite-size scaling technique to this finite-time window case, and it did not
involve any new phase transition or introduce any new thermodynamic scale [8]. However, a
negative field competes with the existing order and depending on the strength hp and duration
�t of the pulse, the system may show a transition from one ordered state with equilibrium
magnetization +m0 (say) to the other equivalent ordered state with equilibrium magnetization
−m0 [9]. This transition is called here the ‘magnetization-reversal’ transition. It may be
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noted that a magnetization-reversal phenomenon occurs trivially in the limit �t → ∞ for any
non-vanishing value of hp at any T < T 0

c . However, this is a limiting case of the transition,
which is studied here only for finite �t . In our studies the magnetization reversal need not
occur during the presence of the external field. In fact, it will be shown later that the closer
one approaches to the threshold value hcp of the pulse strength the longer is the time taken by
the system, after the field is withdrawn, to relax to the final ordered state. We report here in
detail the various results obtained for this dynamic magnetization-reversal transition in a pure
Ising model in two and three dimensions.

The model we studied here is the Ising model with nearest-neighbour interaction under a
time-dependent external magnetic field, described by the Hamiltonian

H = − 1
2

∑
[ij ]

JijSiSj −
∑
i

hi(t)Si (1)

where Jij is the cooperative interaction between the spins at sites i and j , respectively, and
each nearest-neighbour pair denoted by [· · ·] is counted twice in the summation. We consider
the system at temperatures only below its static critical temperature (T < T 0

c ). The external
field is applied after the system is brought to equilibrium characterized by an equilibrium
magnetization m0(T ). The field is uniform in space (hi(t) = h(t) for all i) and its time
dependence is given by

h(t) =
{−hp for t0 � t � t0 + �t

0 otherwise.
(2)

Typical responses of the time-dependent magnetization m(t) under different h(t) are shown
in figure 1. As mentioned before, for appropriate combination of hp and �t , a magnetization-
reversal transition occurs when the system makes a transition from one ordered state to another.
This transition can be observed at any dimension d greater than unity for systems with short-
range interactions. This is because one has to work at temperatures T < T 0

c where, in the

Figure 1. Typical time variation of the response magnetizations m(t) for two different field
pulses h(t) with same �t and T shown. The quantities of interest to characterize the response
magnetizations for both the pulses are indicated.
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absence of a symmetry-breaking field, the free-energy landscape has two equivalent minima
at magnetizations m = ±m0. A phase boundary in the hp–�t-plane gives the minimal
combination of the two parameters at a particular temperature T (<T 0

c ) required to bring
about the transition.

A full numerical solution as well as an analytical treatment in the linear limit of the dynamic
mean-field equation of motion shows the existence of length and time scale divergences at the
transition phase boundary [10]. The divergence of length and time scales is also observed in
a Monte Carlo (MC) simulation study of the Ising model with nearest-neighbour interaction
evolving under a negative pulse through single spin-flip Glauber dynamics [3]. The phase
diagram for the transition was obtained for both MF and MC studies. While the phase
boundaries for the two cases are qualitatively of similar nature, there exists a major difference
which can be accounted for by considering the presence of fluctuations in the simulations. In
the MC study, there exists two distinct time scales in the problem: (a) the nucleation time
τN is the time taken by the system to leave the metastable state under the influence of the
external magnetic field and (b) the relaxation time τR is the time taken by the system to reach
the final equilibrium state after the external field is withdrawn. While τN is controlled by
the strength hp of the external pulse and is bounded by its duration �t which is finite, τR is
the time scale that diverges at the magnetization-reversal phase boundary. According to the
classical nucleation theory (CNT) [11], there can be two distinct mechanisms for the growth
of domains or droplets depending on the strength of the external field. Under the influence of
weaker external magnetic fields, only a single droplet grows to span the entire system and this
is called the single-droplet (SD) or the nucleation regime. On the other hand, under stronger
magnetic fields, many small droplets can grow simultaneously and eventually coalesce to form
a system spanning droplet. This is called the multi-droplet (MD) or the coalescence regime.
The crossover from the SD to the MD regime takes place at the dynamic spinodal field or
hDSP (L, T ) which is a function of system size L and temperature T . The nucleation time τN
changes abruptly as one crosses over from the SD to the MD regime even along the same phase
boundary. The nature of the transition also changes from a continuous one in the MD regime
to a discontinuous nature in the SD regime. All our simulation observations for the dynamic
phase boundary compare well with those suggested by the CNT. The investigations about the
relaxation time τR and the correlation length ξ are also discussed here. The application of
scaling theory in the MD regime gives the estimates of the critical exponents for this dynamic
transition. The organization of the paper is as follows. We discuss the MF results in the next
section and the MC results for square and simple cubic lattices in section 3. A brief summary
and concluding remarks are given in section 4.

2. Mean-field study

The master equation for a system of N Ising spins in contact with a heat bath evolving under
Glauber single spin-flip dynamics can be written as [12]

d

dt
P (S1, . . . , SN ; t) = −

∑
j

Wj (Sj ) P (S1, . . . , SN ; t)

+
∑
j

Wj (−Sj ) P (S1, . . . ,−Sj , . . . , SN ; t) (3)

where P
(
S1, . . . , SN ; t) is the probability to find the spins in the configuration (S1, . . . , SN)

at time t and Wj(Sj ) is the probability of flipping of the j th spin. Satisfying the condition of
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detailed balance one can write the transition probability as

Wj(Sj ) = 1

2λ

[
1 − Sj tanh

(∑
i Jij Si(t) + hj

T

)]
(4)

where λ is a temperature-dependent constant. Defining the spin expectation value as

mi = 〈Si〉 =
∑
{S}

SiP (S1, . . . , SN ; t) (5)

where the summation is carried over all possible spin configurations, one can write

λ
dmi

dt
= −mi +

〈
tanh

(∑
j Jij Sj + hi

T

)〉
. (6)

Under the mean-field approximation (6) can be written after a Fourier transform as

λ
dmq(t)

dt
= −mq(t) + tanh

(
J (q)mq(t) + hq(t)

T

)
(7)

where J (q) is the Fourier transform of Jij . Equation (7) is not analytically tractable and one
can only look for solutions in the small-mq limit where terms linear in mq are dominant. The
linearized equation of motion, therefore, can be written as

dmq(t)

dt
= λ−1

[
(K(q)− 1)mq(t) +

hq(t)

T

]
(8)

where K(q) = J (q)/T . When we are concerned only with the homogeneous magnetization,
we consider the q = 0 mode of the equation and writing mq=0 = m and hq=0 = h, we obtain

dm

dt
= λ−1

[
(K(0)− 1)m(t) +

h(t)

T

]
. (9)

In the mean-field approximation K(0) = T MF
c /T with T MF

c = J (0) and for small q,
K(q) � K(0)

(
1 − q2

)
. Differentiating (7) with respect to the external field, we obtain

the rate equation for the dynamic susceptibility χq(t) as

λ
dχq(t)

dt
= −χq(t) +

(
J (q)χq(t) + 1

T

)
sech2

[
J (q)mq(t) + hq(t)

T

]
(10)

which in the linear limit can be written as

dχq(t)

dt
= λ−1

[
(K(q)− 1) χq(t) +

1

T

]
. (11)

Before we proceed with the solutions of these dynamical equations, we divide the entire
time zone into three different regimes: (I) 0 < t < t0, where h(t) = 0; (II) t0 � t � t0 + �t ,
where h(t) = −hp; and (III) t0 + �t < t < ∞, where h(t) = 0 again. We note that (9)
can be readily solved separately for the three regions as the boundary conditions are exactly
known. In region (I), dm/dt = 0 and the solution of the linearized (9) becomes trivial. We,
therefore, use the solution of (7) in region (I) (m0 = tanh

(
m0T

MF
c /T

)
) as the initial value of

m for region (II). Integrating (9) in region (II), we then obtain

m(t) = hp

�T
+

(
m0 − hp

�T

)
exp [b�T (t − t0)] (12)

where b = 1/λT and �T = T MF
c − T . It is to be noted that in order to justify the validity

of the linearization of (7) one must keep the factor inside the exponential of (12) small. This
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Figure 2. MF phase boundaries for three different temperatures. The full curve is obtained from a
numerical solution of (7) and the dotted curves give the corresponding analytical estimates in the
linear limit Tc ≡ T MF

c .

restricts the linear theory to be valid at temperatures close to T MF
c and for small values of �t .

Writing mw ≡ m(t0 + �t), we obtain from (12)

mw = hp

�T
+

(
m0 − hp

�T

)
eb�T�t . (13)

It is to be noted here that in the absence of fluctuations, the sign of mw(hp,�t) solely decides
which of the two final equilibrium states will be chosen by the system after the withdrawal of
the pulse. At t = t0 + �t , if mw > 0, the system goes back to the +m0 state and if mw < 0,
a magnetization-reversal transition occurs and the system eventually chooses the −m0 state
(see figure 1). Thus setting mw = 0, we obtain the threshold value of the pulse strength at the
mean-field phase boundary for this dynamic phase transition. At any T , combinations of hp
and �t below the phase boundary cannot induce the magnetization-reversal transition, while
those above it can induce the transition. From (13) therefore we can write the equation of the
mean-field phase boundary for the magnetization-reversal transition as

hcp(�t, T ) = �Tm0

1 − e−b�T�t . (14)

Figure 2 shows phase boundaries at different T obtained from (14) and compares those with the
phase boundaries obtained from the numerical solution of the full dynamical equation (7). The
phase boundaries obtained under linear approximation match quite well with those obtained
numerically for small values of �t and at temperatures close to T MF

c , which is the domain of
validity of the linearized theory as discussed before. In region (III), we again have h(t) = 0
and solution of (9) leads to

m(t) = mw exp [b�T {t − (t0 + �t)}]. (15)

We define the relaxation time τMF
R , measured from t = t0 + �t , as the time required to reach

the final equilibrium state characterized by magnetization ±m0 in region (III) (see figure 1).
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Figure 3. Logarithmic divergence of τMF
R across the phase boundary for T/T MF

c = 0.9. The data
points shown by circles are obtained from the solution of (7) and the full curve corresponds to the
solution of the linearized MF equation.

From (15) therefore we can write

τMF
R = 1

b�T
ln

(
m0

|mw|
)

∼ −
(

T

T MF
c − T

)
ln |mw|. (16)

A point to note is thatm(t) in (15) grows exponentially with t and therefore in order to confine
ourselves to the linear regime of m(t), m0 must be small (T close to T MF

c ) and t � τMF
R . The

factor
(
T MF
c − T

)−1
gives the usual critical slowing down for the static transition at T = T MF

c .
However, even for T � T MF

c , τMF
R diverges at the magnetization-reversal phase boundary

where mw vanishes. Figure 3 shows the divergence of τMF
R against mw as obtained from the

numerical solution of the full mean-field equation of motion (7) and compares it with that
obtained from (16).

Solution of χq(t) is more difficult as all the boundary conditions are not known directly.
However, χq(t) can be expressed in terms of m(t) and the solution of the resulting equation
will then have the t dependence coming throughm(t), which we have solved already. Dividing
(10) by (7) we obtain

dχq(t)

dm(t)
= −χq(t) +

(
(J (q)χq(t) + 1)/T

)
sech2 [(J (q)mq(t) + hq(t))/T

]
−mq(t) + tanh

(
(J (q)mq(t) + hq(t))/T

) (17)

which can be rewritten in the linear limit as
dχq
χq + %

= aq
dm

m + h(t)/�t
(18)

where % = 1/T (K(q)− 1) and aq = (K(q)− 1) / (K(0)− 1) � 1 − q2/�T for small q.
In region (II), solution of (18) can be written as

χq(t) = −% +
(
χsq + %

) [m(t)− hp/�T

m0 − hp/�T

]aq
(19)
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where χsq is the equilibrium value of susceptibility in region (I). Solving (18) in region (III)
with the initial boundary condition m(t0 + �t) = mw, we find

χq(t) = −% +
(
χq (t0 + �t) + %

) (m(t)
mw

)aq
= −% +

(
χsq + %

) (m(t)
mw

)aq
eb�T�taq (20)

where use has been made of (19) and (13). The dominating q dependence in χq(t) is coming
from (1/mw)

aq when mw → 0 as one approaches the phase boundary. The singular part of
the dynamic susceptibility can then be written as

χq(t) = (
χsq + %

)
exp

[−q2(ξMF )2
]

(21)

where for small values of mw the correlation length ξMF is given by [10]

ξMF ≡ ξMF (mw) =
[
T MF
c

�T
ln

(
1

|mw|
)] 1

2

. (22)

Thus the length scale also diverges at the magnetization-reversal phase boundary and this can
be demonstrated even using the linearized mean-field equation of motion. Equations (16) and
(22) can now be used to establish the following relation between the diverging time and length
scales:

τMF
R ∼ T

T MF
c

(
ξMF

)2
(23)

which leads to a dynamical critical exponent z = 2. It may be noted that these divergences in
τMF
R and ξMF are shown to occur for any T < T MF

C , and these dynamic relaxation time and
correlation length defined for the magnetization-reversal transition exist only for T < T MF

c .
It may further be noted from (21) that χq(t) → 0 as ξMF → ∞, thereby producing a

minimum of χq at the phase boundary. The absence of any divergence in the susceptibility is

Figure 4. Divergence of χq=0 across the phase boundary obtained from the numerical solution of
(17).
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Figure 5. Plot of χq against mw for different values of q. The inset shows the linear variation of(
ξMF

)−2
against [ln |mw|]−1. The data points for ξMF in the inset are obtained from the slope of

the best-fitted straight lines through a plot of ln χq against q2 for different values of mw .

due to the fact that at t = t0 + �t , there remains no contribution of mw in χq(t) as is evident
from (20). However, numerical solution of (17) for q = 0 mode shows a clear singularity in
the homogeneous susceptibility χ0 at the magnetization-reversal phase boundary (mw = 0),
as depicted in figure 4. One can also have a numerical estimate of ξMF by solving (17) for
different values of q. Figure 5 shows plots of χq(t) against mw for different values of q.

The inset of figure 5 shows the variation of
(
ξMF

)−2
against (ln |mw|)−1, where ξMF was

obtained by fitting the data of figure 5 with straight lines. It is clearly seen from the inset
that for small values of mw the linear approximation agrees quite well with the numerical
results.

3. Monte Carlo study

We now study the transition using a Monte Carlo simulation with single spin-flip Glauber
dynamics [13]. Working at a temperature below the static critical temperature (T 0

c � 2.27
and 4.51 [14] in units of the nearest-neighbour interaction strength J for square and simple
cubic lattices, respectively), the system is prepared by evolving the initial state (say with all
spins up) under Glauber dynamics for temperature T . The evolution time t0 is usually taken to
be sufficiently larger than the static relaxation time at T to ensure that the system reaches an
equilibrium state with magnetization m0 before the external magnetic field is applied at time
t = t0. The magnetizationm(t) starts decreasing from its initial valuem0 due to the effect of the
competing field during the period t0 � t � t0 +�t , and it assumes the valuemw at t = t0 +�t .
Due to the presence of fluctuations, mw < 0 does not necessarily lead to a magnetization
reversal, whereas even for mw > 0 fluctuations can give rise to a magnetization reversal. This
is in contrast with the mean-field case, where due to the absence of any fluctuation the sign of
mw solely determines the final state. In the MC study, however, on an average the final state
is determined by the sign of mw (see figure 1). The magnetization-reversal transition phase
boundary therefore again corresponds to mw = 0.
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Figure 6. Phase boundaries obtained from the MC study for (a) square lattice with L = 100 and
(b) simple cubic lattice with L = 50.

Figure 6 shows phase boundaries at different temperatures for square and simple cubic
lattices. The data points for d = 2 are averaged over 500 different Monte Carlo runs (MCR)
and those for d = 3 are averaged over 150 MCR. A qualitative difference between the MF
and the MC phase boundaries may be noted here. In the former, even for �t → ∞, due to
the absence of fluctuations, hp must be greater than the non-zero coercive field to bring about
the transition and therefore the phase boundaries flatten for larger values of �t . However, in
real systems fluctuations are present and even an infinitesimal strength of the pulse, if applied
for very long time, can bring about the transition. This is evident from the asymptotic nature
of the phase boundaries for large values of �t .

It is instructive to look at the classical theory of nucleation to understand the nature of
the MC phase diagram of the magnetization-reversal transition. A typical configuration of a
ferromagnet, below its static critical temperature T 0

c , consists of droplets or domains of spins
oriented in the same direction, in a sea of oppositely oriented spins. According to CNT, the
equilibrium number of droplets consisting of s spins is given by ns = N exp (−εs/T ), where
εs is the free energy of formation of a droplet containing s spins and N is a normalization
constant. In the presence of a negative external magnetic field h, the free energy can be written
as εs = −2hs + σs(d−1)/d , where the shape of the droplet is assumed to be spherical and σ(T )
is the temperature-dependent surface tension. Droplets of size greater than a critical value sc
are favoured to grow, where sc = [σ(d − 1)/(2d |h|)]d is obtained by maximizing εs . The
number of supercritical droplets is therefore given by nsc = N exp

[−-dσ
d |h|1−d /T

]
, where

-d is a constant depending on dimension only. In the SD regime, where a single supercritical
droplet grows to engulf the whole system, the nucleation time is inversely proportional to
the nucleation rate I . According to the Becker–Döring theory, I is proportional to nsc and
therefore one can write

τSDN ∝ I−1 ∝ exp

[
-dσ

d

T |h|d−1

]
.

However, in the MD regime the nucleation mechanism is different and in this regime many
supercritical droplets grow simultaneously and eventually coalesce to create a system-spanning
droplet. The radius s1/d

c of a supercritical droplet grows linearly with time t and thus sc ∝ td .
For a steady rate of nucleation, the rate of change of magnetization is I td . For a finite change
�m of the magnetization during the nucleation time τMD

N , one can write

�m ∝
∫ τMD

N

0
I td dt = I

(
τMD
N

)d+1
.
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Therefore, in the MD regime one can write [15, 16]

τMD
N ∝ I−1/(d+1) ∝ exp

[
-dσ

d

T (d + 1) |h|d−1

]
.

During the time t0 � t � t0 + �t , when the external field remains ‘on’, the only relevant
time scale in the system is the nucleation time. The magnetization reversal phase boundary
gives the threshold valuehcp of the pulse strength which, within time�t , brings the system from
an equilibrium state with magnetization +m0 to a non-equilibrium state with magnetization
mw = 0−, so that eventually the system evolves to the equilibrium state with magnetization
−m0. The field-driven nucleation mechanism takes place for t0 � t � t0 + �t and therefore
equating the above nucleation times with�t , one obtains for the magnetization-reversal phase
boundary

ln (�t) =
{
c1 + C

[
hcp
]1−d

in the SD regime

c2 + C
[
hcp
]1−d

/(d + 1) in the MD regime
(24)

where C = -dσ
d/T and c1, c2 are constants. Therefore, a plot of ln(�t) against

[
hcp
]d−1

would show two different slopes corresponding to the two regimes [17]. Figure 7 shows these
plots and it indeed has two distinct slopes for both d = 2 (figure 7(a)) and d = 3 (figure 7(c))
at sufficiently high temperatures, where both the regimes are present. The ratioR of the slopes
corresponding to the two regimes has values close to 3 for d = 2 and close to 4 for d = 3, as
suggested by (24). The value of hDSP is obtained from the point of intersection of the straight
lines fitted to the two regimes. At lower temperatures, however, the MD region is absent and
the phase diagram here is marked by a single slope as shown in figures 7(b) and 7(d).

Once the pulse is withdrawn, the system relaxes to one of the two equilibrium states. The
closer one leaves the system to the phase boundary (mw → 0), the larger the relaxation time
τR is. However, unlike the mean-field case, the MC relaxation time falls off exponentially

Figure 7. Plot of ln�t against (hcp)
1−d along the MC phase boundary. (a) T/Tc = 0.31 and (b)

T/Tc = 0.09 for a square lattice and (c) T/Tc = 0.67 and (d) T/Tc = 0.11 for a simple cubic
lattice. The slope ratio R � 3.27 in (a) and � 3.97 in (c).
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Figure 8. MC results for the divergence of τR for L = 40, 50, 100, 200 and 400. The best-fitted
straight lines are guides for the eye. The inset shows the variation with L of the peak height κ in
the prefactor of τR in (25).

with |mw| away from the phase boundary. Figure 8 shows the growth of τR as mw → 0 at
a particular T and for a particular �t . A typical number of MCR used to obtain the data is
400 for L = 40 and 25 for L = 400. The best-fitted curve through the data points shows the
relaxation behaviour as follows:

τR ∼ κ(T , L) e−µ(T )|mw | (25)

where κ(T , L) is a constant depending on temperature and system size and µ(T ) is a constant
depending on temperature only. It may be noted from (25) that τ → κ(T , L) as mw → 0.
Therefore, the true divergence at the phase boundary (where mw = 0) of the relaxation time
depends on the nature of κ(T , L). The inset of figure 8 shows the sharp growth of κ(T , L)
with the system size. The relaxation time τR therefore diverges in the thermodynamic limit
(L → ∞) through the constant κ . It may be noted that this divergence of τR at the dynamic
magnetization-reversal phase boundary occurs even at temperatures far below the static critical
temperature T 0

c .

According to CNT, sc ∝ ∣∣hp∣∣−d and therefore at any fixed T , stronger fields will allow
many critical droplets to form and hence the system goes over to the MD regime. On the other
hand, a weaker field rules out the possibility of more than one critical droplet and therefore
the system goes over to the SD regime. Figure 9 shows snapshots of the spin configurations
at different times in both SD and MD regimes. The snapshots at t = t0 + �t corresponds
to mw ∼ O(10−2). hp > hDSP in figure 9(a) and a single large droplet is formed, whereas
hp < hDSP in (b) and many droplets are seen to be formed. It may be noted from figure 9
that the boundaries of the droplets are flat with very few kinks on it at t = t0 + �t . The
probability of growth of a droplet along a flat boundary is very small (only 25% in the case
of a square lattice) and hence domain wall movement practically stops immediately after the
withdrawal of the field. This restricts further nucleation. It is then left to very large fluctuations
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Figure 9. Snapshots of spin configurations in a 100 × 100 square lattice at different stages (t = t0,
t1 and t0 +�t) of nucleation, where t0 < t1 < t0 +�t . The dots correspond to a +1 spin state. (a)
hp = 0.55, �t = 300 at T/Tc = 0.44 (SD regime) and (b) hp = 0.52, �t = 9 at T/Tc = 0.88
(MD regime).

to resume the domain wall movement and a long time is required for the system to come out
of the metastable state and subsequently reach the final equilibrium state. Thus the effect of
the pulse is to initiate the nucleation process and the threshold value of the pulse strength
is such that within the pulse duration it renders the system with droplets almost without any
kink in it. This observation justifies the sharp growth of the relaxation time at the phase
boundary.

The growth of a length scale at the transition phase boundary can be shown qualitatively
from the distribution of domains of reversed spins. We define a pseudo-correlation length ξ̃ as

ξ̃ 2 =
∑

s R
2
s s

2ns∑
s s

2ns
(26)

where the radius of gyration Rs is defined as R2
s = ∑s

i=1 |ri − r0|2 /s, with ri denoting the
position vector of the ith spin of the domain and r0 = ∑s

i=1 ri/s being the centre of mass of
the domain. As the transition phase boundary is approached, ξ̃ is observed to grow with the
system size as shown in figure 10. A typical number of MCR used for obtaining the data is
10 for L = 1000 and 2000 for L = 50. This indicates the divergence of a length scale at the
phase boundary in the thermodynamic limit. It should be noted, however, that ξ̃ is not exactly
the correlation length of the system [18]. An estimate for the power-law growth of the actual
correlation length ξ , as the phase boundary is approached in the MD region, will be obtained
from the finite-size scaling study discussed later in this section.

The order of the magnetization-reversal transition changes with temperature and with �t
even along the same phase boundary. The transition is discontinuous all along the low-T phase
boundary, whereas at higher values of T the nature of the transition changes from a continuous
to a discontinuous one as one moves towards higher values of �t . For hcp(T ) � hDSP (T ),
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Figure 10. Variation of ξ̃ with L for L = 50, 100, 200, 400, 800 and 1000 for an MC study on a
square lattice.

Figure 11. Plot of P(mw) against mw as one crosses the phase boundary for the MC study on a
100 × 100 square lattice in (a) the MD regime and (b) the SD regime.

the system is brought to the SD regime where the order of the transition is observed to be
discontinuous. On the other hand, continuous transition is observed for hcp(T ) � hDSP (T )

when the system goes over to the MD regime. One can look at the probability distribution
P(mw) of mw to determine the order of the phase transition. Figure 11 shows the variation
of P(mw) as the phase boundary corresponding to a particular temperature is crossed at two
different positions (different �t). The data are averaged over 500 MCR. The existence of a
single peak in (a), which shifts its position continuously from +1 to −1 as the phase boundary
is crossed, indicates the continuous nature of the transition. In (b), however, two peaks of
comparable strength at positions close to ±m0 exist simultaneously. This shows that the system
can simultaneously reside in both the phases which is a sure indication of a discontinuous
phase transition. On phase boundaries corresponding to higher temperatures the crossover
from the discontinuous transition to a continuous one is not very sharp and there exists a
region around hcp = hDSP on the phase boundary, over which the nature of the transition
cannot be determined with certainty. This is evident from figure 7, where the data points near
the tricritical point do not fit to the slope of either of the straight lines corresponding to the
two different regimes.
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Figure 12. Finite-size scaling fits: (a) for d = 2 at T/Tc = 0.88 and (b) for d = 3 at T/Tc = 0.67.

In the region where the transition is continuous in nature one can expect scaling arguments
to hold. We assume power-law behaviour in this regime both for mw

mw ∼ ∣∣hp − hcp(�t, T )
∣∣β (27)

and for the correlation length

ξ ∼ ∣∣hp − hcp(�t, T )
∣∣−ν . (28)

For a finite-size system, hcp is a function of the system size L. Assuming that at the phase
boundary ξ can at most reach a value equal to L, one can write the finite-size scaling form of
mw as [19]

mw ∼ L−β/νf
[(
hp − hcp (�t, T , L)

)
L1/ν

]
(29)

where f (x) ∼ xβ/ν as x → ∞. A plot ofmw/L
−β/ν against

(
hp − hcp (�t, T , L)

)
L1/ν shows

a nice collapse of the data corresponding to L = 50, 100, 200, 400 and 800 for d = 2 and
L = 10, 20, 40, 80 and 120 for d = 3 as shown in figure 12. A typical number of MCR used
to obtain the data is 5120 for L = 50 in d = 2 and 10 000 for L = 10 in d = 3. The values of
the critical exponents obtained from the data collapse are β = 0.85 ± 0.05 and ν = 1.5 ± 0.5
in d = 3 and β = 1.00 ± 0.05 and ν = 2.0 ± 0.5 in d = 2, where hcp (�t, T ) was obtained
with an accuracy of O

(
10−3

)
. All attempts to fit similar data to the above finite-size scaling

form obtained in the SD regime failed.
The accuracy with which hcp (�t, T ) is measured, is very crucial for obtaining the

critical exponents through finite-size scaling. The cumulant method introduced by Binder
and Heermann [20] is one of the reliable methods which can be employed to obtain the value
of hcp. The fourth-order cumulant is defined as

g(L) = 1

2

[
3 −

〈
m4
w

〉〈
m2
w

〉2
]

(30)

where
〈
mn
w

〉 = ∫
mn
wP (mw) dmw. The quantity g(L) is dimensionless and is equal to unity

for |mw| � 0, while g(L) → 0 for mw → 0, assuming a Gaussian distribution of mw around
0 on the phase boundary. Figure 13 shows a plot of g(L) against hp at a fixed �t and T
and the value of the pulse strength corresponding to the point of intersection of the different
curves gives hcp(�t, T ); assuming g ≡ g

[∣∣hp − hcp

∣∣−ν /L]. A typical number of MCR used
to obtain the data is 50 000 for L = 50 and 2500 for L = 800. It is to be noted that none of the
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Figure 13. Plot of g(L) against L for L = 50, 100, 200, 400 and 800 in the MD regime for MC
study on a 100 × 100 square lattice at T = 2.0 for �t = 5.

curves touch the abscissa which corresponds to mw = 0, which is numerically unattainable.
The closer one gets to mw = 0 better the accuracy in the measurement of hcp. In principle the
minima of g(L) corresponding to different L should occur at the same position (at hp = hcp).
The shift in the position of the minima of g(L) in figure 13 is caused by the presence of large
fluctuations in measuring higher moments of mw. However, this estimate of hcp, when used in
the scaling fit of (29), did not significantly improve the estimates of the critical exponents β
and ν.

4. Summary and conclusions

In this paper we have discussed in detail almost all the studies that have been made so far on the
dynamic magnetization-reversal transition in the Ising model under a finite-duration external
magnetic field competing with the existing order for T < T 0

c . Any combination of the pulse
strength and duration above the phase boundary in the hp–�t-plane leads to the transition from
one ordered phase to the equivalent other. We solved numerically the mean-field equation of
motion for the magnetization to obtain the MF phase boundary where the susceptibility and
the relaxation time were observed to diverge. The divergence of both the time (τMF

R ) and the
length scale (ξMF ) at the MF phase boundary was observed even from the analytic solution
of the MF equations of motion under a linear approximation. Under this approximation, the
dynamical critical exponent was found to have a value 2: τMF

R ∼ (
ξMF

)2 ∼ − ln |mw|, where
mw

(
hp,�t, T

) = 0 gives the phase boundary. The same transition has been studied using
Monte Carlo simulations in both two and three dimensions. The obtained phase diagram is
fully consistent with the classical nucleation theory. The nucleation process is initiated by the
external magnetic field and depending on the strength of the field the system nucleates either
through the growth of a single droplet or through the growth and subsequent coalescence
of many droplets. For hp > hDSP the system belongs to the multi-droplet regime and the
transition is continuous in nature, whereas for hp < hDSP the system goes over to the single-
droplet regime where the transition is discontinuous. Expecting power-law behaviour for both
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mw and ξ in multi-droplet regime, the finite-size scaling fits give the estimates of the critical
exponents β and ν for both d = 2 and 3. Unlike in the MF case, where the relaxation time τMF

R

shows a logarithmic divergence, τR in MC studies falls off exponentially away from mw = 0
and the divergence in τR comes through the growth of the prefactor κ in (25) with the system
size.

The symmetry-breaking transition of the dynamic hysteresis in pure Ising systems under
oscillating external fields [1, 5, 6], where them−h loop becomes asymmetric due to the fact that
the magnetizationm(t) fails to follow even the phase or sign of the rapidly changing field h(t),
leads to a dynamic transition. This dynamic transition has been studied by employing finite-
size scaling theory [6, 7] and the estimates of the critical exponents seem to be consistent with
the static Ising universality class [21]. Although this transition, as well as that discussed in this
paper, occur due to the failure of the system to get out of the ‘free energy well’ corresponding
to the existing order because of the lack of a proper combination of the pulse strength and
duration, they belong to different universality classes.
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